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Recap
• Chernoff-Hoeffding bounds

• Use in randomized algorithm for routing to minimize congestion.

• Randomized complexity classes RP and BPP, connections to P/poly.



Probability over uncountably-infinite spaces
• In finite or countable probability spaces, we could think of the probability distribution 
𝜈𝜈 as a function from Ω to [0,1], assigning a probability to each element of  Ω.

• In uncountably-infinite spaces, like Ω = ℝ, this is problematic:

 At most 𝑛𝑛 points 𝑥𝑥 can have 𝜈𝜈 𝑥𝑥 ≥ 1/𝑛𝑛.

 Only countably many points 𝑥𝑥 can have 𝜈𝜈 𝑥𝑥 > 0.  (Any such 𝑥𝑥 must have 𝜈𝜈 𝑥𝑥 ≥
1/𝑛𝑛 for some integer 𝑛𝑛).

To resolve, will only talk about probabilities of events from an allowed set of 
events known as a 𝜎𝜎-algebra or 𝜎𝜎-field.



Probability over uncountably-infinite spaces

The sets in F are the allowed events that may have probabilities (the measurable sets). 

Not necessarily for uncountably-infinite 
unions

It is also closed under countable 
intersections (by De Morgan’s laws)



Probability over uncountably-infinite spaces

The Borel 𝜎𝜎-algebra is the smallest 𝜎𝜎-algebra on ℝ that contains all intervals.

A real-valued random variable 𝑋𝑋 is a measurable function over (Ω,F, 𝜈𝜈): a function from Ω to ℝ
such that for every Borel set 𝐵𝐵, the set 𝑋𝑋−1 𝐵𝐵 = {𝜔𝜔:𝑋𝑋 𝜔𝜔 ∈ 𝐵𝐵} is a measurable set (inF).

Equivalently, for any 𝑐𝑐 ∈ ℝ, {𝜔𝜔:𝑋𝑋 𝜔𝜔 ≤ 𝑐𝑐} is a measurable set, and so has a well-defined probability.

Often, we will think of a random variable as just a probability distribution on its range.



Random variables
• Given a R.V. 𝑋𝑋, we define its cumulative distribution function 𝐹𝐹𝑋𝑋 𝑧𝑧 = ℙ[𝑋𝑋 ≤ 𝑧𝑧].

• Can observe that 𝐹𝐹𝑋𝑋 is a non-decreasing function.   If it is differentiable, then its 
derivative 𝑓𝑓 is the density function of 𝑋𝑋, and we typically refer to 𝑋𝑋 as a continuous 
R.V.

• 𝔼𝔼 𝑋𝑋 = ∫Ω𝑋𝑋 𝜔𝜔 𝑑𝑑𝜈𝜈 = ∫−∞
∞ 𝑥𝑥𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥.

• For discrete RVs, we had 𝔼𝔼 𝑋𝑋 = ∑𝜔𝜔𝑋𝑋 𝜔𝜔 𝜈𝜈 𝜔𝜔 = ∑𝑎𝑎 𝑎𝑎 ⋅ ℙ(𝑋𝑋 = 𝑎𝑎).



Gaussian Random variables
• A Gaussian Random Variable is an R.V. with density 𝑓𝑓 𝑥𝑥 = 1
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• Notationally, we write 𝑋𝑋 ∼ 𝑁𝑁(𝜇𝜇,𝜎𝜎2).
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Gaussian Random variables
A couple more useful facts we’ll need:

• For 𝑋𝑋 ∼ 𝑁𝑁 0,1 , 𝜆𝜆 ∈ 0,1/2 , 𝔼𝔼 𝑒𝑒𝜆𝜆𝑋𝑋2 = 1/ 1 − 2𝜆𝜆. 

• Let 𝑍𝑍 = 𝑐𝑐1𝑋𝑋1 + 𝑐𝑐2𝑋𝑋2 where 𝑋𝑋1,𝑋𝑋2 ∼ 𝑁𝑁 0,1 are independent.  Then 𝑍𝑍 ∼ 𝑁𝑁(0, 𝑐𝑐12 + 𝑐𝑐22). 

 One way to think of this: consider taking an inner-product between the vector 
𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 and the vector (𝑋𝑋1,𝑋𝑋2).  Because a d-dimensional Gaussian is 
spherically-symmetric, we can instead choose an orthogonal basis where one 
basis vector is �̂�𝑐 = ⁄𝑐𝑐 𝑐𝑐 and the others are orthogonal (and so can be ignored).  
So, we just have a value taken from a single Gaussian, stretched by |𝑐𝑐|.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma
Imagine you have 𝑛𝑛 data points in a 𝑑𝑑-dimensional space, where 𝑑𝑑 is large. 

The JL lemma says that no matter how large 𝑑𝑑 is, if you randomly project the data 
down to a space of dimension 𝑘𝑘 = 𝑂𝑂 log 𝑛𝑛

𝜖𝜖2
, then whp you will approximately 

preserve the relative distances between points up to a 1 ± 𝜖𝜖 factor.

So, if all you care about are approximate distances, then you can wlog assume your 
data is in a not-too-high dimensional space.

How to randomly project?  Choose 𝑘𝑘 random vectors 𝐺𝐺1, … ,𝐺𝐺𝑘𝑘 from spherical 
Gaussian, and project by inner-product: 𝑣𝑣 → ( 𝐺𝐺1, 𝑣𝑣 , … , 𝐺𝐺𝑘𝑘 , 𝑣𝑣 ).  I.e., 𝑣𝑣 → 𝐺𝐺𝑣𝑣. 



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

The JL Lemma: Let 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 ∈ ℝ𝑑𝑑.   Choose a random matrix 𝐺𝐺 ∈ ℝ𝑘𝑘×𝑑𝑑 for 𝑘𝑘 = 8 ln 𝑛𝑛
𝜖𝜖2/2−𝜖𝜖3/2

,  
with each 𝐺𝐺𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,1) independently.   Consider 𝜑𝜑 𝑣𝑣 = 𝐺𝐺𝑣𝑣/ 𝑘𝑘. 
With probability at least 1 − 1/𝑛𝑛, for all pairs 𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑖𝑖 we have:

1 − 𝜖𝜖 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖
2 ≤ 𝜑𝜑 𝑣𝑣𝑖𝑖 − 𝜑𝜑 𝑣𝑣𝑖𝑖

2 ≤ 1 + 𝜖𝜖 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖
2.

Note that since 𝜑𝜑 is linear, 𝜑𝜑 𝑣𝑣𝑖𝑖 − 𝜑𝜑 𝑣𝑣𝑖𝑖 = 𝜑𝜑 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖 . So, it suffices to prove that 
for a single vector 𝑤𝑤 = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖, with probability at least 1 − 1/𝑛𝑛3 we have:

1 − 𝜖𝜖 𝑤𝑤 2 ≤ 𝜑𝜑 𝑤𝑤 ≤ 1 + 𝜖𝜖 𝑤𝑤 2.
And then apply a union bound.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Claim: Let 𝑤𝑤 ∈ ℝ𝑑𝑑.   Choose a random matrix 𝐺𝐺 ∈ ℝ𝑘𝑘×𝑑𝑑 for 𝑘𝑘 = 8 ln 𝑛𝑛
𝜖𝜖2/2−𝜖𝜖3/2

,  with each 
𝐺𝐺𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,1) independently.  With probability at least 1 − 1/𝑛𝑛3 we have:

1 − 𝜖𝜖 𝑤𝑤 2 ≤ 𝐺𝐺𝑤𝑤/ 𝑘𝑘
2
≤ 1 + 𝜖𝜖 𝑤𝑤 2.

Proof:

• Consider 𝐺𝐺𝐺𝐺 𝑖𝑖
‖𝐺𝐺‖

= 𝐺𝐺𝑖𝑖𝐺𝐺
‖𝐺𝐺‖

= 1
‖𝐺𝐺‖

∑𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖.  This is a Gaussian RV 𝑋𝑋𝑖𝑖 ∼ 𝑁𝑁(0,1).

• So,  𝐺𝐺𝐺𝐺
2

𝐺𝐺 2 = ∑𝑖𝑖=1𝑘𝑘 𝑋𝑋𝑖𝑖2 where 𝑋𝑋𝑖𝑖 are independent.  𝔼𝔼 ∑𝑖𝑖 𝑋𝑋𝑖𝑖2 = 𝑘𝑘.  

• Just need to show that for 𝑍𝑍 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖2, whp, 1 − 𝜖𝜖 𝑘𝑘 ≤ 𝑍𝑍 ≤ 1 + 𝜖𝜖 𝑘𝑘.

(In other words, need tail bound for sum of independent squared-Gaussian R.V.s)



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Other direction is similar

Finally, for 𝑘𝑘 =
8 ln 𝑛𝑛

𝜖𝜖2/2−𝜖𝜖3/2
, this is 

sufficiently small



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma
Conclusion: if you only care about approximate distances, approximate angles, 
etc, then can assume wlog that data lies in a space of dimension no greater than 
𝑂𝑂(log 𝑛𝑛

𝜖𝜖2
).  

Use for: approximate nearest-neighbor, streaming algorithms, …
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