TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 14: Probability over uncountably-infinite spaces, Gaussian RVs, Johnson-Lindenstrauss Lemma

Recap

- Chernoff-Hoeffding bounds
- Use in randomized algorithm for routing to minimize congestion.
- Randomized complexity classes RP and BPP, connections to P/poly.

Probability over uncountably-infinite spaces

- In finite or countable probability spaces, we could think of the probability distribution v as a function from Ω to $[0,1]$, assigning a probability to each element of Ω.
- In uncountably-infinite spaces, like $\Omega=\mathbb{R}$, this is problematic:
\Rightarrow At most n points x can have $v(x) \geq 1 / n$.
$>$ Only countably many points x can have $v(x)>0$. (Any such x must have $v(x) \geq$ $1 / n$ for some integer n).

To resolve, will only talk about probabilities of events from an allowed set of events known as a σ-algebra or σ-field.

Probability over uncountably-infinite spaces

Definition 1.1 Let 2^{Ω} denote the set of all subsets of Ω. A set $\mathcal{F} \subseteq 2^{\Omega}$ is called a σ-field (or σ-algebra) if

1. $\varnothing \in \mathcal{F}$.
2. $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$ (where $A^{c}=\Omega \backslash A$).

It is also closed under countable intersections (by De Morgan's laws)
3. For a (countable) sequence A_{1}, A_{2}, \ldots such that each $A_{i} \in \mathcal{F}$, we have $\cup_{i} A_{i} \in \mathcal{F}$.

The sets in \mathcal{F} are the allowed events that may have probabilities (the measurable sets).
Definition 1.2 Given a σ-field $\mathcal{F} \subseteq 2^{\Omega}$, a function $v: \mathcal{F} \rightarrow[0,1]$ is known as a probability measure if

1. $v(\varnothing)=0$.

Not necessarily for uncountably-infinite unions
2. $v\left(E^{c}\right)=1-v(E)$ for all $E \in \mathcal{F}$.

$$
v\left(\cup_{i} E_{i}\right)=\sum_{i} v\left(E_{i}\right)
$$

Probability over uncountably-infinite spaces

Definition 1.1 Let 2^{Ω} denote the set of all subsets of Ω. A set $\mathcal{F} \subseteq 2^{\Omega}$ is called a σ-field (or σ-algebra) if

1. $\varnothing \in \mathcal{F}$.
2. $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$ (where $A^{c}=\Omega \backslash A$).
3. For a (countable) sequence A_{1}, A_{2}, \ldots such that each $A_{i} \in \mathcal{F}$, we have $\cup_{i} A_{i} \in \mathcal{F}$.

The Borel σ-algebra is the smallest σ-algebra on \mathbb{R} that contains all intervals.

A real-valued random variable X is a measurable function over (Ω, \mathcal{F}, v) : a function from Ω to \mathbb{R} such that for every Borel set B, the set $X^{-1}(B)=\{\omega: X(\omega) \in B\}$ is a measurable set (in \mathcal{F}).

Equivalently, for any $c \in \mathbb{R},\{\omega: X(\omega) \leq c\}$ is a measurable set, and so has a well-defined probability.
Often, we will think of a random variable as just a probability distribution on its range.

Random variables

- Given a R.V. X, we define its cumulative distribution function $F_{X}(z)=\mathbb{P}[X \leq z]$.
- Can observe that F_{X} is a non-decreasing function. If it is differentiable, then its derivative f is the density function of X, and we typically refer to X as a continuous R.V.
- $\mathbb{E}[X]=\int_{\Omega} X(\omega) d v=\int_{-\infty}^{\infty} x f(x) d x$.
- For discrete RVs, we had $\mathbb{E}[X]=\sum_{\omega} X(\omega) v(\omega)=\sum_{a} a \cdot \mathbb{P}(X=a)$.

Gaussian Random variables

- A Gaussian Random Variable is an R.V. with density $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$, for some μ and σ^{2} which are its mean and variance respectively.
- Notationally, we write $X \sim N\left(\mu, \sigma^{2}\right)$.

Claim: $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=1$.

$$
\text { Proof: } \begin{aligned}
& \left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x\right)^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y=\frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2} / 2} r d r d \theta \\
& =\int_{0}^{\infty} e^{-r^{2} / 2} r d r=-\left.e^{-r^{2} / 2}\right|_{0} ^{\infty}=1
\end{aligned}
$$

Gaussian Random variables

A couple more useful facts we'll need:

- For $X \sim N(0,1), \lambda \in(0,1 / 2), \mathbb{E}\left[e^{\lambda X^{2}}\right]=1 / \sqrt{1-2 \lambda}$.
- Let $Z=c_{1} X_{1}+c_{2} X_{2}$ where $X_{1}, X_{2} \sim N(0,1)$ are independent. Then $Z \sim N\left(0, c_{1}^{2}+c_{2}^{2}\right)$.
$>$ One way to think of this: consider taking an inner-product between the vector $c=\left(c_{1}, c_{2}\right)$ and the vector $\left(X_{1}, X_{2}\right)$. Because a d-dimensional Gaussian is spherically-symmetric, we can instead choose an orthogonal basis where one basis vector is $\hat{c}={ }^{c} /\|c\|$ and the others are orthogonal (and so can be ignored). So, we just have a value taken from a single Gaussian, stretched by $|c|$.

Dimensionality Reduction and the JohnsonLindenstrauss Lemma

Imagine you have n data points in a d-dimensional space, where d is large.
The JL lemma says that no matter how large d is, if you randomly project the data down to a space of dimension $k=O\left(\frac{\log n}{\epsilon^{2}}\right)$, then whp you will approximately preserve the relative distances between points up to a $1 \pm \epsilon$ factor.

So, if all you care about are approximate distances, then you can wlog assume your data is in a not-too-high dimensional space.

How to randomly project? Choose k random vectors G_{1}, \ldots, G_{k} from spherical Gaussian, and project by inner-product: $v \rightarrow\left(\left\langle G_{1}, v\right\rangle, \ldots,\left\langle G_{k}, v\right\rangle\right)$. I.e., $v \rightarrow G v$.

Dimensionality Reduction and the JohnsonLindenstrauss Lemma

The JL Lemma: Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$. Choose a random matrix $G \in \mathbb{R}^{k \times d}$ for $k=\frac{8 \ln n}{\epsilon^{2} / 2-\epsilon^{3} / 2^{\prime}}$, with each $G_{i j} \sim N(0,1)$ independently. Consider $\varphi(v)=G v / \sqrt{k}$. With probability at least $1-1 / n$, for all pairs v_{i}, v_{j} we have:

$$
(1-\epsilon)\left\|v_{i}-v_{j}\right\|^{2} \leq\left\|\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)\right\|^{2} \leq(1+\epsilon)\left\|v_{i}-v_{j}\right\|^{2}
$$

Note that since φ is linear, $\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)=\varphi\left(v_{i}-v_{j}\right)$. So, it suffices to prove that for a single vector $w=v_{i}-v_{j}$, with probability at least $1-1 / n^{3}$ we have:

$$
(1-\epsilon)\|w\|^{2} \leq\|\varphi(w)\| \leq(1+\epsilon)\|w\|^{2}
$$

And then apply a union bound.

Dimensionality Reduction and the JohnsonLindenstrauss Lemma

Claim: Let $w \in \mathbb{R}^{d}$. Choose a random matrix $G \in \mathbb{R}^{k \times d}$ for $k=\frac{8 \ln n}{\epsilon^{2} / 2-\epsilon^{3} / 2^{2}}$, with each $G_{i j} \sim N(0,1)$ independently. With probability at least $1-1 / n^{3}$ we have:

$$
(1-\epsilon)\|w\|^{2} \leq\|G w / \sqrt{k}\|^{2} \leq(1+\epsilon)\|w\|^{2}
$$

Proof:

- Consider $\frac{(G w)_{i}}{\|w\|}=\frac{G_{i} w}{\|w\|}=\frac{1}{\|w\|} \sum_{j} G_{i j} w_{j}$. This is a Gaussian RV $X_{i} \sim N(0,1)$.
- So, $\frac{\|G w\|^{2}}{\|w\|^{2}}=\sum_{i=1}^{k} X_{i}^{2}$ where X_{i} are independent. $\mathbb{E}\left[\sum_{i} X_{i}^{2}\right]=k$.
- Just need to show that for $Z=\sum_{i} X_{i}^{2}$, whp, $(1-\epsilon) k \leq Z \leq(1+\epsilon) k$. (In other words, need tail bound for sum of independent squared-Gaussian R.V.s)

Dimensionality Reduction and the JohnsonLindenstrauss Lemma

$$
\mathbb{P}[Z \geq(1+\varepsilon) k] \leq \mathbb{P}\left[e^{\lambda Z} \geq e^{\lambda \cdot(1+\varepsilon) k}\right]
$$

Other direction is similar

$$
\leq \frac{\mathbb{E}\left[e^{\lambda \cdot Z}\right]}{e^{\lambda \cdot(1+\varepsilon) k}}
$$ $=\frac{\mathbb{E}\left[e^{\lambda \cdot \sum_{i=1}^{k} X_{i}^{2}}\right]}{e^{\lambda \cdot(1+\varepsilon) k}}=\frac{\prod_{i=1}^{k} \mathbb{E}\left[e^{\lambda \cdot X_{i}^{2}}\right]}{e^{\lambda \cdot(1+\varepsilon) k}} \quad$ (by the independence of X_{1}, \ldots, X_{k})

$$
=\frac{\prod_{i=1}^{k} \frac{1}{\sqrt{1-2 \lambda}}}{e^{\lambda \cdot(1+\varepsilon) k}}
$$

(by Lemma 2.3)
$\leq\left(\frac{e^{-2(1+\varepsilon) \lambda}}{1-2 \lambda}\right)^{k / 2}$
(assume $\lambda<1 / 2$)
$\leq\left(e^{-\varepsilon}(1+\varepsilon)\right)^{k / 2}$

$$
\left(\text { let } \lambda=\frac{\varepsilon}{2(1+\varepsilon)}\right)
$$

Finally, for $k=$
$\frac{8 \ln n}{\epsilon^{2} / 2-\epsilon^{3} / 2}$, this is sufficiently small
$\leq\left(\left(1-\varepsilon+\frac{\varepsilon^{2}}{2}\right)(1+\varepsilon)\right)^{k / 2}$
$\leq e^{-\left(\frac{\varepsilon^{2}}{2}-\frac{\xi^{3}}{2}\right) \frac{k}{2}}$
(by Taylor expansion of e^{-x})

$$
\text { (by } 1+x \leq e^{x} \text {) }
$$

Dimensionality Reduction and the JohnsonLindenstrauss Lemma

Conclusion: if you only care about approximate distances, approximate angles, etc, then can assume wlog that data lies in a space of dimension no greater than $O\left(\frac{\log n}{\epsilon^{2}}\right)$.

Use for: approximate nearest-neighbor, streaming algorithms, ...

